Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-8+2\sqrt{3}
Whakangāwaritia te tauraro o \frac{12}{3+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{3}.
\frac{12\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}-8+2\sqrt{3}
Whakaarohia te \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(3-\sqrt{3}\right)}{9-3}-8+2\sqrt{3}
Pūrua 3. Pūrua \sqrt{3}.
\frac{12\left(3-\sqrt{3}\right)}{6}-8+2\sqrt{3}
Tangohia te 3 i te 9, ka 6.
2\left(3-\sqrt{3}\right)-8+2\sqrt{3}
Whakawehea te 12\left(3-\sqrt{3}\right) ki te 6, kia riro ko 2\left(3-\sqrt{3}\right).
6-2\sqrt{3}-8+2\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3-\sqrt{3}.
-2-2\sqrt{3}+2\sqrt{3}
Tangohia te 8 i te 6, ka -2.
-2
Pahekotia te -2\sqrt{3} me 2\sqrt{3}, ka 0.