Aromātai
\frac{9\left(x\left(x+600\right)+160\right)}{20}
Whakaroha
\frac{9x^{2}}{20}+270x+72
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{25}\times 600+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{3\times 600}{25}+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Tuhia te \frac{3}{25}\times 600 hei hautanga kotahi.
\frac{1800}{25}+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Whakareatia te 3 ki te 600, ka 1800.
72+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Whakawehea te 1800 ki te 25, kia riro ko 72.
72+3x\times \frac{15}{100}\left(600+x\right)
Whakawehea te 300x ki te 100, kia riro ko 3x.
72+3x\times \frac{3}{20}\left(600+x\right)
Whakahekea te hautanga \frac{15}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
72+\frac{3\times 3}{20}x\left(600+x\right)
Tuhia te 3\times \frac{3}{20} hei hautanga kotahi.
72+\frac{9}{20}x\left(600+x\right)
Whakareatia te 3 ki te 3, ka 9.
72+\frac{9}{20}x\times 600+\frac{9}{20}xx
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{9}{20}x ki te 600+x.
72+\frac{9}{20}x\times 600+\frac{9}{20}x^{2}
Whakareatia te x ki te x, ka x^{2}.
72+\frac{9\times 600}{20}x+\frac{9}{20}x^{2}
Tuhia te \frac{9}{20}\times 600 hei hautanga kotahi.
72+\frac{5400}{20}x+\frac{9}{20}x^{2}
Whakareatia te 9 ki te 600, ka 5400.
72+270x+\frac{9}{20}x^{2}
Whakawehea te 5400 ki te 20, kia riro ko 270.
\frac{3}{25}\times 600+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{3\times 600}{25}+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Tuhia te \frac{3}{25}\times 600 hei hautanga kotahi.
\frac{1800}{25}+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Whakareatia te 3 ki te 600, ka 1800.
72+\frac{300x}{100}\times \frac{15}{100}\left(600+x\right)
Whakawehea te 1800 ki te 25, kia riro ko 72.
72+3x\times \frac{15}{100}\left(600+x\right)
Whakawehea te 300x ki te 100, kia riro ko 3x.
72+3x\times \frac{3}{20}\left(600+x\right)
Whakahekea te hautanga \frac{15}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
72+\frac{3\times 3}{20}x\left(600+x\right)
Tuhia te 3\times \frac{3}{20} hei hautanga kotahi.
72+\frac{9}{20}x\left(600+x\right)
Whakareatia te 3 ki te 3, ka 9.
72+\frac{9}{20}x\times 600+\frac{9}{20}xx
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{9}{20}x ki te 600+x.
72+\frac{9}{20}x\times 600+\frac{9}{20}x^{2}
Whakareatia te x ki te x, ka x^{2}.
72+\frac{9\times 600}{20}x+\frac{9}{20}x^{2}
Tuhia te \frac{9}{20}\times 600 hei hautanga kotahi.
72+\frac{5400}{20}x+\frac{9}{20}x^{2}
Whakareatia te 9 ki te 600, ka 5400.
72+270x+\frac{9}{20}x^{2}
Whakawehea te 5400 ki te 20, kia riro ko 270.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}