Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{11^{1}w^{12}z^{5}}{22^{1}w^{3}z^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{11^{1}}{22^{1}}w^{12-3}z^{5-3}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{11^{1}}{22^{1}}w^{9}z^{5-3}
Tango 3 mai i 12.
\frac{11^{1}}{22^{1}}w^{9}z^{2}
Tango 3 mai i 5.
\frac{1}{2}w^{9}z^{2}
Whakahekea te hautanga \frac{11}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{11z^{5}}{22z^{3}}w^{12-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{z^{2}}{2}w^{9})
Mahia ngā tātaitanga.
9\times \frac{z^{2}}{2}w^{9-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{9z^{2}}{2}w^{8}
Mahia ngā tātaitanga.