Aromātai
-\frac{11}{27}\approx -0.407407407
Tauwehe
-\frac{11}{27} = -0.4074074074074074
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{11}{15}\times 13}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Whakawehe \frac{\frac{11}{15}}{-\frac{2\times 5+3}{5}} ki te \frac{9}{13} mā te whakarea \frac{\frac{11}{15}}{-\frac{2\times 5+3}{5}} ki te tau huripoki o \frac{9}{13}.
\frac{\frac{11\times 13}{15}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Tuhia te \frac{11}{15}\times 13 hei hautanga kotahi.
\frac{\frac{143}{15}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Whakareatia te 11 ki te 13, ka 143.
\frac{\frac{143}{15}}{\left(-\frac{10+3}{5}\right)\times 9}
Whakareatia te 2 ki te 5, ka 10.
\frac{\frac{143}{15}}{-\frac{13}{5}\times 9}
Tāpirihia te 10 ki te 3, ka 13.
\frac{\frac{143}{15}}{\frac{-13\times 9}{5}}
Tuhia te -\frac{13}{5}\times 9 hei hautanga kotahi.
\frac{\frac{143}{15}}{\frac{-117}{5}}
Whakareatia te -13 ki te 9, ka -117.
\frac{\frac{143}{15}}{-\frac{117}{5}}
Ka taea te hautanga \frac{-117}{5} te tuhi anō ko -\frac{117}{5} mā te tango i te tohu tōraro.
\frac{143}{15}\left(-\frac{5}{117}\right)
Whakawehe \frac{143}{15} ki te -\frac{117}{5} mā te whakarea \frac{143}{15} ki te tau huripoki o -\frac{117}{5}.
\frac{143\left(-5\right)}{15\times 117}
Me whakarea te \frac{143}{15} ki te -\frac{5}{117} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-715}{1755}
Mahia ngā whakarea i roto i te hautanga \frac{143\left(-5\right)}{15\times 117}.
-\frac{11}{27}
Whakahekea te hautanga \frac{-715}{1755} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 65.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}