Aromātai
-\frac{574}{3}\approx -191.333333333
Tauwehe
-\frac{574}{3} = -191\frac{1}{3} = -191.33333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{11\times 4}{12}+5-\frac{20\times 30}{3}
Tuhia te \frac{11}{12}\times 4 hei hautanga kotahi.
\frac{44}{12}+5-\frac{20\times 30}{3}
Whakareatia te 11 ki te 4, ka 44.
\frac{11}{3}+5-\frac{20\times 30}{3}
Whakahekea te hautanga \frac{44}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{11}{3}+\frac{15}{3}-\frac{20\times 30}{3}
Me tahuri te 5 ki te hautau \frac{15}{3}.
\frac{11+15}{3}-\frac{20\times 30}{3}
Tā te mea he rite te tauraro o \frac{11}{3} me \frac{15}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{26}{3}-\frac{20\times 30}{3}
Tāpirihia te 11 ki te 15, ka 26.
\frac{26}{3}-\frac{600}{3}
Whakareatia te 20 ki te 30, ka 600.
\frac{26-600}{3}
Tā te mea he rite te tauraro o \frac{26}{3} me \frac{600}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{574}{3}
Tangohia te 600 i te 26, ka -574.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}