Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5-i.
\frac{104i\left(5-i\right)}{5^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{104i\left(5-i\right)}{26}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{104i\times 5+104\left(-1\right)i^{2}}{26}
Whakareatia 104i ki te 5-i.
\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{104+520i}{26}
Mahia ngā whakarea i roto o 104i\times 5+104\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
4+20i
Whakawehea te 104+520i ki te 26, kia riro ko 4+20i.
Re(\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)})
Me whakarea te taurunga me te tauraro o \frac{104i}{5+i} ki te haumi hiato o te tauraro, 5-i.
Re(\frac{104i\left(5-i\right)}{5^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{104i\left(5-i\right)}{26})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{104i\times 5+104\left(-1\right)i^{2}}{26})
Whakareatia 104i ki te 5-i.
Re(\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{104+520i}{26})
Mahia ngā whakarea i roto o 104i\times 5+104\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(4+20i)
Whakawehea te 104+520i ki te 26, kia riro ko 4+20i.
4
Ko te wāhi tūturu o 4+20i ko 4.