Whakaoti mō A
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
Whakaoti mō B
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Me whakarea ngā taha e rua o te whārite ki te 1003002, arā, te tauraro pātahi he tino iti rawa te kitea o 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Whakareatia te \frac{1}{1001} ki te 1003, ka \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1001A+\frac{1002}{1001}C=\frac{1003}{1001}-1002B
Tangohia te 1002B mai i ngā taha e rua.
1001A=\frac{1003}{1001}-1002B-\frac{1002}{1001}C
Tangohia te \frac{1002}{1001}C mai i ngā taha e rua.
1001A=-\frac{1002C}{1001}-1002B+\frac{1003}{1001}
He hanga arowhānui tō te whārite.
\frac{1001A}{1001}=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Whakawehea ngā taha e rua ki te 1001.
A=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Mā te whakawehe ki te 1001 ka wetekia te whakareanga ki te 1001.
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
Whakawehe \frac{1003}{1001}-1002B-\frac{1002C}{1001} ki te 1001.
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Me whakarea ngā taha e rua o te whārite ki te 1003002, arā, te tauraro pātahi he tino iti rawa te kitea o 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Whakareatia te \frac{1}{1001} ki te 1003, ka \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1002B+\frac{1002}{1001}C=\frac{1003}{1001}-1001A
Tangohia te 1001A mai i ngā taha e rua.
1002B=\frac{1003}{1001}-1001A-\frac{1002}{1001}C
Tangohia te \frac{1002}{1001}C mai i ngā taha e rua.
1002B=-\frac{1002C}{1001}-1001A+\frac{1003}{1001}
He hanga arowhānui tō te whārite.
\frac{1002B}{1002}=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Whakawehea ngā taha e rua ki te 1002.
B=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Mā te whakawehe ki te 1002 ka wetekia te whakareanga ki te 1002.
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
Whakawehe \frac{1003}{1001}-1001A-\frac{1002C}{1001} ki te 1002.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}