Aromātai
1996.09375
Tauwehe
\frac{7 \cdot 73 \cdot 5 ^ {3}}{2 ^ {5}} = 1996\frac{3}{32} = 1996.09375
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1000 ( \frac { 1 } { 2 ^ { 9 } } - 1 ) } { - 0.5 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1000\left(\frac{1}{512}-1\right)}{-0.5}
Tātaihia te 2 mā te pū o 9, kia riro ko 512.
\frac{1000\left(\frac{1}{512}-\frac{512}{512}\right)}{-0.5}
Me tahuri te 1 ki te hautau \frac{512}{512}.
\frac{1000\times \frac{1-512}{512}}{-0.5}
Tā te mea he rite te tauraro o \frac{1}{512} me \frac{512}{512}, me tango rāua mā te tango i ō raua taurunga.
\frac{1000\left(-\frac{511}{512}\right)}{-0.5}
Tangohia te 512 i te 1, ka -511.
\frac{\frac{1000\left(-511\right)}{512}}{-0.5}
Tuhia te 1000\left(-\frac{511}{512}\right) hei hautanga kotahi.
\frac{\frac{-511000}{512}}{-0.5}
Whakareatia te 1000 ki te -511, ka -511000.
\frac{-\frac{63875}{64}}{-0.5}
Whakahekea te hautanga \frac{-511000}{512} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{-63875}{64\left(-0.5\right)}
Tuhia te \frac{-\frac{63875}{64}}{-0.5} hei hautanga kotahi.
\frac{-63875}{-32}
Whakareatia te 64 ki te -0.5, ka -32.
\frac{63875}{32}
Ka taea te hautanga \frac{-63875}{-32} te whakamāmā ki te \frac{63875}{32} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}