Whakaoti mō x
x = \frac{300}{7} = 42\frac{6}{7} \approx 42.857142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
75\times 100+x\left(-100\right)=75x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 75x, arā, te tauraro pātahi he tino iti rawa te kitea o x,75.
7500+x\left(-100\right)=75x
Whakareatia te 75 ki te 100, ka 7500.
7500+x\left(-100\right)-75x=0
Tangohia te 75x mai i ngā taha e rua.
7500-175x=0
Pahekotia te x\left(-100\right) me -75x, ka -175x.
-175x=-7500
Tangohia te 7500 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-7500}{-175}
Whakawehea ngā taha e rua ki te -175.
x=\frac{300}{7}
Whakahekea te hautanga \frac{-7500}{-175} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}