Aromātai
\frac{44}{15}\approx 2.933333333
Tauwehe
\frac{2 ^ {2} \cdot 11}{3 \cdot 5} = 2\frac{14}{15} = 2.933333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{10-\frac{6\times 3}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Tuhia te 6\times \frac{3}{5} hei hautanga kotahi.
\frac{10-\frac{18}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Whakareatia te 6 ki te 3, ka 18.
\frac{\frac{50}{5}-\frac{18}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Me tahuri te 10 ki te hautau \frac{50}{5}.
\frac{\frac{50-18}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Tā te mea he rite te tauraro o \frac{50}{5} me \frac{18}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{32}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Tangohia te 18 i te 50, ka 32.
\frac{\frac{32}{5}}{\frac{15\times 4}{5}}+\frac{12}{5}
Tuhia te 15\times \frac{4}{5} hei hautanga kotahi.
\frac{\frac{32}{5}}{\frac{60}{5}}+\frac{12}{5}
Whakareatia te 15 ki te 4, ka 60.
\frac{\frac{32}{5}}{12}+\frac{12}{5}
Whakawehea te 60 ki te 5, kia riro ko 12.
\frac{32}{5\times 12}+\frac{12}{5}
Tuhia te \frac{\frac{32}{5}}{12} hei hautanga kotahi.
\frac{32}{60}+\frac{12}{5}
Whakareatia te 5 ki te 12, ka 60.
\frac{8}{15}+\frac{12}{5}
Whakahekea te hautanga \frac{32}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{8}{15}+\frac{36}{15}
Ko te maha noa iti rawa atu o 15 me 5 ko 15. Me tahuri \frac{8}{15} me \frac{12}{5} ki te hautau me te tautūnga 15.
\frac{8+36}{15}
Tā te mea he rite te tauraro o \frac{8}{15} me \frac{36}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{44}{15}
Tāpirihia te 8 ki te 36, ka 44.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}