Aromātai
\frac{5\left(5x-2\right)\left(y-3x\right)}{7x}
Whakaroha
\frac{25y}{7}-\frac{75x}{7}-\frac{10y}{7x}+\frac{30}{7}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(10-25x\right)\left(9x^{2}-y^{2}\right)}{\left(3x+y\right)\times 7x}
Whakawehe \frac{10-25x}{3x+y} ki te \frac{7x}{9x^{2}-y^{2}} mā te whakarea \frac{10-25x}{3x+y} ki te tau huripoki o \frac{7x}{9x^{2}-y^{2}}.
\frac{5\left(-5x+2\right)\left(3x+y\right)\left(3x-y\right)}{7x\left(3x+y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5\left(-5x+2\right)\left(3x-y\right)}{7x}
Me whakakore tahi te 3x+y i te taurunga me te tauraro.
\frac{-75x^{2}+25xy+30x-10y}{7x}
Me whakaroha te kīanga.
\frac{\left(10-25x\right)\left(9x^{2}-y^{2}\right)}{\left(3x+y\right)\times 7x}
Whakawehe \frac{10-25x}{3x+y} ki te \frac{7x}{9x^{2}-y^{2}} mā te whakarea \frac{10-25x}{3x+y} ki te tau huripoki o \frac{7x}{9x^{2}-y^{2}}.
\frac{5\left(-5x+2\right)\left(3x+y\right)\left(3x-y\right)}{7x\left(3x+y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5\left(-5x+2\right)\left(3x-y\right)}{7x}
Me whakakore tahi te 3x+y i te taurunga me te tauraro.
\frac{-75x^{2}+25xy+30x-10y}{7x}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}