Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{10-3\sqrt{2}}{\sqrt{2}}=a+b\sqrt{2}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(10-3\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=a+b\sqrt{2}
Whakangāwaritia te tauraro o \frac{10-3\sqrt{2}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(10-3\sqrt{2}\right)\sqrt{2}}{2}=a+b\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{10\sqrt{2}-3\left(\sqrt{2}\right)^{2}}{2}=a+b\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 10-3\sqrt{2} ki te \sqrt{2}.
\frac{10\sqrt{2}-3\times 2}{2}=a+b\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{10\sqrt{2}-6}{2}=a+b\sqrt{2}
Whakareatia te -3 ki te 2, ka -6.
5\sqrt{2}-3=a+b\sqrt{2}
Whakawehea ia wā o 10\sqrt{2}-6 ki te 2, kia riro ko 5\sqrt{2}-3.
a+b\sqrt{2}=5\sqrt{2}-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{2}=5\sqrt{2}-3-a
Tangohia te a mai i ngā taha e rua.
\sqrt{2}b=-a+5\sqrt{2}-3
He hanga arowhānui tō te whārite.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+5\sqrt{2}-3}{\sqrt{2}}
Whakawehea ngā taha e rua ki te \sqrt{2}.
b=\frac{-a+5\sqrt{2}-3}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
b=\frac{\sqrt{2}\left(-a+5\sqrt{2}-3\right)}{2}
Whakawehe 5\sqrt{2}-a-3 ki te \sqrt{2}.