Whakaoti mō b
b=-\frac{\sqrt{2}\left(a+3-5\sqrt{2}\right)}{2}
Whakaoti mō a
a=-\sqrt{2}b+5\sqrt{2}-3
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 10 - \sqrt { 18 } } { \sqrt { 2 } } = a + b \sqrt { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{10-3\sqrt{2}}{\sqrt{2}}=a+b\sqrt{2}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(10-3\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=a+b\sqrt{2}
Whakangāwaritia te tauraro o \frac{10-3\sqrt{2}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(10-3\sqrt{2}\right)\sqrt{2}}{2}=a+b\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{10\sqrt{2}-3\left(\sqrt{2}\right)^{2}}{2}=a+b\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 10-3\sqrt{2} ki te \sqrt{2}.
\frac{10\sqrt{2}-3\times 2}{2}=a+b\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{10\sqrt{2}-6}{2}=a+b\sqrt{2}
Whakareatia te -3 ki te 2, ka -6.
5\sqrt{2}-3=a+b\sqrt{2}
Whakawehea ia wā o 10\sqrt{2}-6 ki te 2, kia riro ko 5\sqrt{2}-3.
a+b\sqrt{2}=5\sqrt{2}-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{2}=5\sqrt{2}-3-a
Tangohia te a mai i ngā taha e rua.
\sqrt{2}b=-a+5\sqrt{2}-3
He hanga arowhānui tō te whārite.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+5\sqrt{2}-3}{\sqrt{2}}
Whakawehea ngā taha e rua ki te \sqrt{2}.
b=\frac{-a+5\sqrt{2}-3}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
b=\frac{\sqrt{2}\left(-a+5\sqrt{2}-3\right)}{2}
Whakawehe 5\sqrt{2}-a-3 ki te \sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}