Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{10-3\sqrt{2}}{\sqrt{2}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(10-3\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{10-3\sqrt{2}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(10-3\sqrt{2}\right)\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{10\sqrt{2}-3\left(\sqrt{2}\right)^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 10-3\sqrt{2} ki te \sqrt{2}.
\frac{10\sqrt{2}-3\times 2}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{10\sqrt{2}-6}{2}
Whakareatia te -3 ki te 2, ka -6.
5\sqrt{2}-3
Whakawehea ia wā o 10\sqrt{2}-6 ki te 2, kia riro ko 5\sqrt{2}-3.