Whakaoti mō x
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)\times 10-0\times 5x\left(x+2\right)=x\times 12
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+2.
10x+20-0\times 5x\left(x+2\right)=x\times 12
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 10.
10x+20-0x\left(x+2\right)=x\times 12
Whakareatia te 0 ki te 5, ka 0.
10x+20-0=x\times 12
Ko te tau i whakarea ki te kore ka hua ko te kore.
10x+20-0-x\times 12=0
Tangohia te x\times 12 mai i ngā taha e rua.
10x+20-12x=0
Whakaraupapatia anō ngā kīanga tau.
-2x+20=0
Pahekotia te 10x me -12x, ka -2x.
-2x=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-20}{-2}
Whakawehea ngā taha e rua ki te -2.
x=10
Whakawehea te -20 ki te -2, kia riro ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}