Manatoko
pono
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 10 } { 5 - 3 } - 3 = \frac { 12 } { 3 \cdot 5 - 9 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{10}{2}-3=\frac{12}{3\times 5-9}
Tangohia te 3 i te 5, ka 2.
5-3=\frac{12}{3\times 5-9}
Whakawehea te 10 ki te 2, kia riro ko 5.
2=\frac{12}{3\times 5-9}
Tangohia te 3 i te 5, ka 2.
2=\frac{12}{15-9}
Whakareatia te 3 ki te 5, ka 15.
2=\frac{12}{6}
Tangohia te 9 i te 15, ka 6.
2=2
Whakawehea te 12 ki te 6, kia riro ko 2.
\text{true}
Whakatauritea te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}