Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{10\left(-5-\sqrt{15}\right)}{\left(-5+\sqrt{15}\right)\left(-5-\sqrt{15}\right)}
Whakangāwaritia te tauraro o \frac{10}{-5+\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te -5-\sqrt{15}.
\frac{10\left(-5-\sqrt{15}\right)}{\left(-5\right)^{2}-\left(\sqrt{15}\right)^{2}}
Whakaarohia te \left(-5+\sqrt{15}\right)\left(-5-\sqrt{15}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(-5-\sqrt{15}\right)}{25-15}
Pūrua -5. Pūrua \sqrt{15}.
\frac{10\left(-5-\sqrt{15}\right)}{10}
Tangohia te 15 i te 25, ka 10.
-5-\sqrt{15}
Me whakakore te 10 me te 10.