Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10+\left(x-5\right)x=\left(x+1\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(x-5\right)\left(x+1\right),x+1,x-5.
10+x^{2}-5x=\left(x+1\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te x.
10+x^{2}-5x=3x+3
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
10+x^{2}-5x-3x=3
Tangohia te 3x mai i ngā taha e rua.
10+x^{2}-8x=3
Pahekotia te -5x me -3x, ka -8x.
10+x^{2}-8x-3=0
Tangohia te 3 mai i ngā taha e rua.
7+x^{2}-8x=0
Tangohia te 3 i te 10, ka 7.
x^{2}-8x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Tāpiri 64 ki te -28.
x=\frac{-\left(-8\right)±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{8±6}{2}
Ko te tauaro o -8 ko 8.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{8±6}{2} ina he tāpiri te ±. Tāpiri 8 ki te 6.
x=7
Whakawehe 14 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{8±6}{2} ina he tango te ±. Tango 6 mai i 8.
x=1
Whakawehe 2 ki te 2.
x=7 x=1
Kua oti te whārite te whakatau.
10+\left(x-5\right)x=\left(x+1\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(x-5\right)\left(x+1\right),x+1,x-5.
10+x^{2}-5x=\left(x+1\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te x.
10+x^{2}-5x=3x+3
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
10+x^{2}-5x-3x=3
Tangohia te 3x mai i ngā taha e rua.
10+x^{2}-8x=3
Pahekotia te -5x me -3x, ka -8x.
x^{2}-8x=3-10
Tangohia te 10 mai i ngā taha e rua.
x^{2}-8x=-7
Tangohia te 10 i te 3, ka -7.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-7+16
Pūrua -4.
x^{2}-8x+16=9
Tāpiri -7 ki te 16.
\left(x-4\right)^{2}=9
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=3 x-4=-3
Whakarūnātia.
x=7 x=1
Me tāpiri 4 ki ngā taha e rua o te whārite.