Tīpoka ki ngā ihirangi matua
Whakaoti mō β
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10\beta \times 33=\beta ^{2}\times 9\times 33\times 2
Tē taea kia ōrite te tāupe \beta ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 1089\beta ^{2}.
330\beta =\beta ^{2}\times 9\times 33\times 2
Whakareatia te 10 ki te 33, ka 330.
330\beta =\beta ^{2}\times 297\times 2
Whakareatia te 9 ki te 33, ka 297.
330\beta =\beta ^{2}\times 594
Whakareatia te 297 ki te 2, ka 594.
330\beta -\beta ^{2}\times 594=0
Tangohia te \beta ^{2}\times 594 mai i ngā taha e rua.
330\beta -594\beta ^{2}=0
Whakareatia te -1 ki te 594, ka -594.
\beta \left(330-594\beta \right)=0
Tauwehea te \beta .
\beta =0 \beta =\frac{5}{9}
Hei kimi otinga whārite, me whakaoti te \beta =0 me te 330-594\beta =0.
\beta =\frac{5}{9}
Tē taea kia ōrite te tāupe \beta ki 0.
10\beta \times 33=\beta ^{2}\times 9\times 33\times 2
Tē taea kia ōrite te tāupe \beta ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 1089\beta ^{2}.
330\beta =\beta ^{2}\times 9\times 33\times 2
Whakareatia te 10 ki te 33, ka 330.
330\beta =\beta ^{2}\times 297\times 2
Whakareatia te 9 ki te 33, ka 297.
330\beta =\beta ^{2}\times 594
Whakareatia te 297 ki te 2, ka 594.
330\beta -\beta ^{2}\times 594=0
Tangohia te \beta ^{2}\times 594 mai i ngā taha e rua.
330\beta -594\beta ^{2}=0
Whakareatia te -1 ki te 594, ka -594.
-594\beta ^{2}+330\beta =0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\beta =\frac{-330±\sqrt{330^{2}}}{2\left(-594\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -594 mō a, 330 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\beta =\frac{-330±330}{2\left(-594\right)}
Tuhia te pūtakerua o te 330^{2}.
\beta =\frac{-330±330}{-1188}
Whakareatia 2 ki te -594.
\beta =\frac{0}{-1188}
Nā, me whakaoti te whārite \beta =\frac{-330±330}{-1188} ina he tāpiri te ±. Tāpiri -330 ki te 330.
\beta =0
Whakawehe 0 ki te -1188.
\beta =-\frac{660}{-1188}
Nā, me whakaoti te whārite \beta =\frac{-330±330}{-1188} ina he tango te ±. Tango 330 mai i -330.
\beta =\frac{5}{9}
Whakahekea te hautanga \frac{-660}{-1188} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 132.
\beta =0 \beta =\frac{5}{9}
Kua oti te whārite te whakatau.
\beta =\frac{5}{9}
Tē taea kia ōrite te tāupe \beta ki 0.
10\beta \times 33=\beta ^{2}\times 9\times 33\times 2
Tē taea kia ōrite te tāupe \beta ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 1089\beta ^{2}.
330\beta =\beta ^{2}\times 9\times 33\times 2
Whakareatia te 10 ki te 33, ka 330.
330\beta =\beta ^{2}\times 297\times 2
Whakareatia te 9 ki te 33, ka 297.
330\beta =\beta ^{2}\times 594
Whakareatia te 297 ki te 2, ka 594.
330\beta -\beta ^{2}\times 594=0
Tangohia te \beta ^{2}\times 594 mai i ngā taha e rua.
330\beta -594\beta ^{2}=0
Whakareatia te -1 ki te 594, ka -594.
-594\beta ^{2}+330\beta =0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-594\beta ^{2}+330\beta }{-594}=\frac{0}{-594}
Whakawehea ngā taha e rua ki te -594.
\beta ^{2}+\frac{330}{-594}\beta =\frac{0}{-594}
Mā te whakawehe ki te -594 ka wetekia te whakareanga ki te -594.
\beta ^{2}-\frac{5}{9}\beta =\frac{0}{-594}
Whakahekea te hautanga \frac{330}{-594} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 66.
\beta ^{2}-\frac{5}{9}\beta =0
Whakawehe 0 ki te -594.
\beta ^{2}-\frac{5}{9}\beta +\left(-\frac{5}{18}\right)^{2}=\left(-\frac{5}{18}\right)^{2}
Whakawehea te -\frac{5}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{18}. Nā, tāpiria te pūrua o te -\frac{5}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
\beta ^{2}-\frac{5}{9}\beta +\frac{25}{324}=\frac{25}{324}
Pūruatia -\frac{5}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(\beta -\frac{5}{18}\right)^{2}=\frac{25}{324}
Tauwehea \beta ^{2}-\frac{5}{9}\beta +\frac{25}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\beta -\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\beta -\frac{5}{18}=\frac{5}{18} \beta -\frac{5}{18}=-\frac{5}{18}
Whakarūnātia.
\beta =\frac{5}{9} \beta =0
Me tāpiri \frac{5}{18} ki ngā taha e rua o te whārite.
\beta =\frac{5}{9}
Tē taea kia ōrite te tāupe \beta ki 0.