Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{100+11^{2}+12^{2}+13^{2}+14^{2}}{365}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\frac{100+121+12^{2}+13^{2}+14^{2}}{365}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
\frac{221+12^{2}+13^{2}+14^{2}}{365}
Tāpirihia te 100 ki te 121, ka 221.
\frac{221+144+13^{2}+14^{2}}{365}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{365+13^{2}+14^{2}}{365}
Tāpirihia te 221 ki te 144, ka 365.
\frac{365+169+14^{2}}{365}
Tātaihia te 13 mā te pū o 2, kia riro ko 169.
\frac{534+14^{2}}{365}
Tāpirihia te 365 ki te 169, ka 534.
\frac{534+196}{365}
Tātaihia te 14 mā te pū o 2, kia riro ko 196.
\frac{730}{365}
Tāpirihia te 534 ki te 196, ka 730.
2
Whakawehea te 730 ki te 365, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}