Whakaoti mō x
x = \frac{51}{26} = 1\frac{25}{26} \approx 1.961538462
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.7=x\times \frac{1.3}{1.5}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
1.7=x\times \frac{13}{15}
Whakarohaina te \frac{1.3}{1.5} mā te whakarea i te taurunga me te tauraro ki te 10.
x\times \frac{13}{15}=1.7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=1.7\times \frac{15}{13}
Me whakarea ngā taha e rua ki te \frac{15}{13}, te tau utu o \frac{13}{15}.
x=\frac{17}{10}\times \frac{15}{13}
Me tahuri ki tau ā-ira 1.7 ki te hautau \frac{17}{10}.
x=\frac{17\times 15}{10\times 13}
Me whakarea te \frac{17}{10} ki te \frac{15}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{255}{130}
Mahia ngā whakarea i roto i te hautanga \frac{17\times 15}{10\times 13}.
x=\frac{51}{26}
Whakahekea te hautanga \frac{255}{130} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}