Whakaoti mō s
s=10
Tohaina
Kua tāruatia ki te papatopenga
s\times \frac{1.5}{2.5}=6
Tē taea kia ōrite te tāupe s ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te s.
s\times \frac{15}{25}=6
Whakarohaina te \frac{1.5}{2.5} mā te whakarea i te taurunga me te tauraro ki te 10.
s\times \frac{3}{5}=6
Whakahekea te hautanga \frac{15}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
s=6\times \frac{5}{3}
Me whakarea ngā taha e rua ki te \frac{5}{3}, te tau utu o \frac{3}{5}.
s=\frac{6\times 5}{3}
Tuhia te 6\times \frac{5}{3} hei hautanga kotahi.
s=\frac{30}{3}
Whakareatia te 6 ki te 5, ka 30.
s=10
Whakawehea te 30 ki te 3, kia riro ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}