Whakaoti mō t
t=\frac{\sqrt{65}}{10}-\frac{1}{2}\approx 0.306225775
t=-\frac{\sqrt{65}}{10}-\frac{1}{2}\approx -1.306225775
Tohaina
Kua tāruatia ki te papatopenga
-5\left(1-t^{3}\right)=7\left(t-1\right)
Tē taea kia ōrite te tāupe t ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5\left(t-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 1-t,5.
-5+5t^{3}=7\left(t-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 1-t^{3}.
-5+5t^{3}=7t-7
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te t-1.
-5+5t^{3}-7t=-7
Tangohia te 7t mai i ngā taha e rua.
-5+5t^{3}-7t+7=0
Me tāpiri te 7 ki ngā taha e rua.
2+5t^{3}-7t=0
Tāpirihia te -5 ki te 7, ka 2.
5t^{3}-7t+2=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{2}{5},±2,±\frac{1}{5},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 2, ā, ka wehea e q te whakarea arahanga 5. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
t=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
5t^{2}+5t-2=0
Mā te whakatakotoranga Tauwehe, he tauwehe te t-k o te pūrau mō ia pūtake k. Whakawehea te 5t^{3}-7t+2 ki te t-1, kia riro ko 5t^{2}+5t-2. Whakaotihia te whārite ina ōrite te hua ki te 0.
t=\frac{-5±\sqrt{5^{2}-4\times 5\left(-2\right)}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te 5 mō te b, me te -2 mō te c i te ture pūrua.
t=\frac{-5±\sqrt{65}}{10}
Mahia ngā tātaitai.
t=-\frac{\sqrt{65}}{10}-\frac{1}{2} t=\frac{\sqrt{65}}{10}-\frac{1}{2}
Whakaotia te whārite 5t^{2}+5t-2=0 ina he tōrunga te ±, ina he tōraro te ±.
t\in \emptyset
Tangohia ngā uara e kore e ōrite ki te taurangi.
t=1 t=-\frac{\sqrt{65}}{10}-\frac{1}{2} t=\frac{\sqrt{65}}{10}-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.
t=\frac{\sqrt{65}}{10}-\frac{1}{2} t=-\frac{\sqrt{65}}{10}-\frac{1}{2}
Tē taea kia ōrite te tāupe t ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}