Whakaoti mō p
p=1
Tohaina
Kua tāruatia ki te papatopenga
2\left(1-p\right)+4\times 2p-3\left(1-7p\right)=2\left(2\times 6+1\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 6,3,4.
2-2p+4\times 2p-3\left(1-7p\right)=2\left(2\times 6+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-p.
2-2p+8p-3\left(1-7p\right)=2\left(2\times 6+1\right)
Whakareatia te 4 ki te 2, ka 8.
2+6p-3\left(1-7p\right)=2\left(2\times 6+1\right)
Pahekotia te -2p me 8p, ka 6p.
2+6p-3+21p=2\left(2\times 6+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-7p.
-1+6p+21p=2\left(2\times 6+1\right)
Tangohia te 3 i te 2, ka -1.
-1+27p=2\left(2\times 6+1\right)
Pahekotia te 6p me 21p, ka 27p.
-1+27p=2\left(12+1\right)
Whakareatia te 2 ki te 6, ka 12.
-1+27p=2\times 13
Tāpirihia te 12 ki te 1, ka 13.
-1+27p=26
Whakareatia te 2 ki te 13, ka 26.
27p=26+1
Me tāpiri te 1 ki ngā taha e rua.
27p=27
Tāpirihia te 26 ki te 1, ka 27.
p=\frac{27}{27}
Whakawehea ngā taha e rua ki te 27.
p=1
Whakawehea te 27 ki te 27, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}