Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(1-4i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 3-i.
\frac{\left(1-4i\right)\left(3-i\right)}{3^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-4i\right)\left(3-i\right)}{10}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{1\times 3+1\left(-i\right)-4i\times 3-4\left(-1\right)i^{2}}{10}
Me whakarea ngā tau matatini 1-4i me 3-i pēnā i te whakarea huarua.
\frac{1\times 3+1\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right)}{10}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3-i-12i-4}{10}
Mahia ngā whakarea i roto o 1\times 3+1\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right).
\frac{3-4+\left(-1-12\right)i}{10}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3-i-12i-4.
\frac{-1-13i}{10}
Mahia ngā tāpiri i roto o 3-4+\left(-1-12\right)i.
-\frac{1}{10}-\frac{13}{10}i
Whakawehea te -1-13i ki te 10, kia riro ko -\frac{1}{10}-\frac{13}{10}i.
Re(\frac{\left(1-4i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Me whakarea te taurunga me te tauraro o \frac{1-4i}{3+i} ki te haumi hiato o te tauraro, 3-i.
Re(\frac{\left(1-4i\right)\left(3-i\right)}{3^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-4i\right)\left(3-i\right)}{10})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{1\times 3+1\left(-i\right)-4i\times 3-4\left(-1\right)i^{2}}{10})
Me whakarea ngā tau matatini 1-4i me 3-i pēnā i te whakarea huarua.
Re(\frac{1\times 3+1\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right)}{10})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3-i-12i-4}{10})
Mahia ngā whakarea i roto o 1\times 3+1\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right).
Re(\frac{3-4+\left(-1-12\right)i}{10})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3-i-12i-4.
Re(\frac{-1-13i}{10})
Mahia ngā tāpiri i roto o 3-4+\left(-1-12\right)i.
Re(-\frac{1}{10}-\frac{13}{10}i)
Whakawehea te -1-13i ki te 10, kia riro ko -\frac{1}{10}-\frac{13}{10}i.
-\frac{1}{10}
Ko te wāhi tūturu o -\frac{1}{10}-\frac{13}{10}i ko -\frac{1}{10}.