Whakaoti mō a
a=\frac{1}{4\left(c+8\right)}
c\neq -8
Whakaoti mō c
c=-8+\frac{1}{4a}
a\neq 0
Tohaina
Kua tāruatia ki te papatopenga
1-4ac=32a
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 4a.
1-4ac-32a=0
Tangohia te 32a mai i ngā taha e rua.
-4ac-32a=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-4c-32\right)a=-1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(-4c-32\right)a}{-4c-32}=-\frac{1}{-4c-32}
Whakawehea ngā taha e rua ki te -4c-32.
a=-\frac{1}{-4c-32}
Mā te whakawehe ki te -4c-32 ka wetekia te whakareanga ki te -4c-32.
a=\frac{1}{4\left(c+8\right)}
Whakawehe -1 ki te -4c-32.
a=\frac{1}{4\left(c+8\right)}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
1-4ac=32a
Whakareatia ngā taha e rua o te whārite ki te 4a.
-4ac=32a-1
Tangohia te 1 mai i ngā taha e rua.
\left(-4a\right)c=32a-1
He hanga arowhānui tō te whārite.
\frac{\left(-4a\right)c}{-4a}=\frac{32a-1}{-4a}
Whakawehea ngā taha e rua ki te -4a.
c=\frac{32a-1}{-4a}
Mā te whakawehe ki te -4a ka wetekia te whakareanga ki te -4a.
c=-8+\frac{1}{4a}
Whakawehe 32a-1 ki te -4a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}