Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-2-4\sqrt{5}}{3-\sqrt{5}-\sqrt{5}+2}
Tangohia te 3 i te 1, ka -2.
\frac{-2-4\sqrt{5}}{3-2\sqrt{5}+2}
Pahekotia te -\sqrt{5} me -\sqrt{5}, ka -2\sqrt{5}.
\frac{-2-4\sqrt{5}}{5-2\sqrt{5}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{\left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{-2-4\sqrt{5}}{5-2\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 5+2\sqrt{5}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{5^{2}-\left(-2\sqrt{5}\right)^{2}}
Whakaarohia te \left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-\left(-2\sqrt{5}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Whakarohaina te \left(-2\sqrt{5}\right)^{2}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-4\left(\sqrt{5}\right)^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-4\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-20}
Whakareatia te 4 ki te 5, ka 20.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{5}
Tangohia te 20 i te 25, ka 5.
\frac{-10-4\sqrt{5}-20\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{5}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -2-4\sqrt{5} ki ia tau o 5+2\sqrt{5}.
\frac{-10-24\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{5}
Pahekotia te -4\sqrt{5} me -20\sqrt{5}, ka -24\sqrt{5}.
\frac{-10-24\sqrt{5}-8\times 5}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{-10-24\sqrt{5}-40}{5}
Whakareatia te -8 ki te 5, ka -40.
\frac{-50-24\sqrt{5}}{5}
Tangohia te 40 i te -10, ka -50.