Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(1-2i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1-2i.
\frac{\left(1-2i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-2i\right)\left(1-2i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)i^{2}}{5}
Me whakarea ngā tau matatini 1-2i me 1-2i pēnā i te whakarea huarua.
\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{1-2i-2i-4}{5}
Mahia ngā whakarea i roto o 1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right).
\frac{1-4+\left(-2-2\right)i}{5}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1-2i-2i-4.
\frac{-3-4i}{5}
Mahia ngā tāpiri i roto o 1-4+\left(-2-2\right)i.
-\frac{3}{5}-\frac{4}{5}i
Whakawehea te -3-4i ki te 5, kia riro ko -\frac{3}{5}-\frac{4}{5}i.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Me whakarea te taurunga me te tauraro o \frac{1-2i}{1+2i} ki te haumi hiato o te tauraro, 1-2i.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)i^{2}}{5})
Me whakarea ngā tau matatini 1-2i me 1-2i pēnā i te whakarea huarua.
Re(\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{1-2i-2i-4}{5})
Mahia ngā whakarea i roto o 1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right).
Re(\frac{1-4+\left(-2-2\right)i}{5})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1-2i-2i-4.
Re(\frac{-3-4i}{5})
Mahia ngā tāpiri i roto o 1-4+\left(-2-2\right)i.
Re(-\frac{3}{5}-\frac{4}{5}i)
Whakawehea te -3-4i ki te 5, kia riro ko -\frac{3}{5}-\frac{4}{5}i.
-\frac{3}{5}
Ko te wāhi tūturu o -\frac{3}{5}-\frac{4}{5}i ko -\frac{3}{5}.