Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.5}{1-\frac{90\times 5+1}{5}}=\frac{1+0.5}{1-\frac{1}{2}}
Tangohia te 0.5 i te 1, ka 0.5.
\frac{0.5}{1-\frac{450+1}{5}}=\frac{1+0.5}{1-\frac{1}{2}}
Whakareatia te 90 ki te 5, ka 450.
\frac{0.5}{1-\frac{451}{5}}=\frac{1+0.5}{1-\frac{1}{2}}
Tāpirihia te 450 ki te 1, ka 451.
\frac{0.5}{\frac{5}{5}-\frac{451}{5}}=\frac{1+0.5}{1-\frac{1}{2}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{0.5}{\frac{5-451}{5}}=\frac{1+0.5}{1-\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{451}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{0.5}{-\frac{446}{5}}=\frac{1+0.5}{1-\frac{1}{2}}
Tangohia te 451 i te 5, ka -446.
0.5\left(-\frac{5}{446}\right)=\frac{1+0.5}{1-\frac{1}{2}}
Whakawehe 0.5 ki te -\frac{446}{5} mā te whakarea 0.5 ki te tau huripoki o -\frac{446}{5}.
\frac{1}{2}\left(-\frac{5}{446}\right)=\frac{1+0.5}{1-\frac{1}{2}}
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1\left(-5\right)}{2\times 446}=\frac{1+0.5}{1-\frac{1}{2}}
Me whakarea te \frac{1}{2} ki te -\frac{5}{446} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-5}{892}=\frac{1+0.5}{1-\frac{1}{2}}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-5\right)}{2\times 446}.
-\frac{5}{892}=\frac{1+0.5}{1-\frac{1}{2}}
Ka taea te hautanga \frac{-5}{892} te tuhi anō ko -\frac{5}{892} mā te tango i te tohu tōraro.
-\frac{5}{892}=\frac{1.5}{1-\frac{1}{2}}
Tāpirihia te 1 ki te 0.5, ka 1.5.
-\frac{5}{892}=\frac{1.5}{\frac{2}{2}-\frac{1}{2}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
-\frac{5}{892}=\frac{1.5}{\frac{2-1}{2}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{892}=\frac{1.5}{\frac{1}{2}}
Tangohia te 1 i te 2, ka 1.
-\frac{5}{892}=1.5\times 2
Whakawehe 1.5 ki te \frac{1}{2} mā te whakarea 1.5 ki te tau huripoki o \frac{1}{2}.
-\frac{5}{892}=3
Whakareatia te 1.5 ki te 2, ka 3.
-\frac{5}{892}=\frac{2676}{892}
Me tahuri te 3 ki te hautau \frac{2676}{892}.
\text{false}
Whakatauritea te -\frac{5}{892} me te \frac{2676}{892}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}