Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(1-\sqrt{2}\right)\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1-\sqrt{2}}{2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\left(1-\sqrt{2}\right)\sqrt{6}}{2\times 6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\left(1-\sqrt{2}\right)\sqrt{6}}{12}
Whakareatia te 2 ki te 6, ka 12.
\frac{\sqrt{6}-\sqrt{2}\sqrt{6}}{12}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-\sqrt{2} ki te \sqrt{6}.
\frac{\sqrt{6}-\sqrt{2}\sqrt{2}\sqrt{3}}{12}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{\sqrt{6}-2\sqrt{3}}{12}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.