Aromātai
-\frac{x-1}{x\left(x-3\right)}
Whakaroha
-\frac{x-1}{x\left(x-3\right)}
Graph
Pātaitai
Polynomial
\frac { 1 - \frac { x + 1 } { 2 x ^ { 2 } } } { 2 - x + \frac { x + 3 } { 2 x } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2x^{2}}{2x^{2}}-\frac{x+1}{2x^{2}}}{2-x+\frac{x+3}{2x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2x^{2}}{2x^{2}}.
\frac{\frac{2x^{2}-\left(x+1\right)}{2x^{2}}}{2-x+\frac{x+3}{2x}}
Tā te mea he rite te tauraro o \frac{2x^{2}}{2x^{2}} me \frac{x+1}{2x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{2-x+\frac{x+3}{2x}}
Mahia ngā whakarea i roto o 2x^{2}-\left(x+1\right).
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{\left(2-x\right)\times 2x}{2x}+\frac{x+3}{2x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2-x ki te \frac{2x}{2x}.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{\left(2-x\right)\times 2x+x+3}{2x}}
Tā te mea he rite te tauraro o \frac{\left(2-x\right)\times 2x}{2x} me \frac{x+3}{2x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{4x-2x^{2}+x+3}{2x}}
Mahia ngā whakarea i roto o \left(2-x\right)\times 2x+x+3.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{5x-2x^{2}+3}{2x}}
Whakakotahitia ngā kupu rite i 4x-2x^{2}+x+3.
\frac{\left(2x^{2}-x-1\right)\times 2x}{2x^{2}\left(5x-2x^{2}+3\right)}
Whakawehe \frac{2x^{2}-x-1}{2x^{2}} ki te \frac{5x-2x^{2}+3}{2x} mā te whakarea \frac{2x^{2}-x-1}{2x^{2}} ki te tau huripoki o \frac{5x-2x^{2}+3}{2x}.
\frac{2x^{2}-x-1}{x\left(-2x^{2}+5x+3\right)}
Me whakakore tahi te 2x i te taurunga me te tauraro.
\frac{\left(x-1\right)\left(2x+1\right)}{x\left(-x+3\right)\left(2x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x-1}{x\left(-x+3\right)}
Me whakakore tahi te 2x+1 i te taurunga me te tauraro.
\frac{x-1}{-x^{2}+3x}
Me whakaroha te kīanga.
\frac{\frac{2x^{2}}{2x^{2}}-\frac{x+1}{2x^{2}}}{2-x+\frac{x+3}{2x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2x^{2}}{2x^{2}}.
\frac{\frac{2x^{2}-\left(x+1\right)}{2x^{2}}}{2-x+\frac{x+3}{2x}}
Tā te mea he rite te tauraro o \frac{2x^{2}}{2x^{2}} me \frac{x+1}{2x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{2-x+\frac{x+3}{2x}}
Mahia ngā whakarea i roto o 2x^{2}-\left(x+1\right).
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{\left(2-x\right)\times 2x}{2x}+\frac{x+3}{2x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2-x ki te \frac{2x}{2x}.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{\left(2-x\right)\times 2x+x+3}{2x}}
Tā te mea he rite te tauraro o \frac{\left(2-x\right)\times 2x}{2x} me \frac{x+3}{2x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{4x-2x^{2}+x+3}{2x}}
Mahia ngā whakarea i roto o \left(2-x\right)\times 2x+x+3.
\frac{\frac{2x^{2}-x-1}{2x^{2}}}{\frac{5x-2x^{2}+3}{2x}}
Whakakotahitia ngā kupu rite i 4x-2x^{2}+x+3.
\frac{\left(2x^{2}-x-1\right)\times 2x}{2x^{2}\left(5x-2x^{2}+3\right)}
Whakawehe \frac{2x^{2}-x-1}{2x^{2}} ki te \frac{5x-2x^{2}+3}{2x} mā te whakarea \frac{2x^{2}-x-1}{2x^{2}} ki te tau huripoki o \frac{5x-2x^{2}+3}{2x}.
\frac{2x^{2}-x-1}{x\left(-2x^{2}+5x+3\right)}
Me whakakore tahi te 2x i te taurunga me te tauraro.
\frac{\left(x-1\right)\left(2x+1\right)}{x\left(-x+3\right)\left(2x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x-1}{x\left(-x+3\right)}
Me whakakore tahi te 2x+1 i te taurunga me te tauraro.
\frac{x-1}{-x^{2}+3x}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}