Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 - \frac { 4 } { 3 } } { 2 - \frac { 8 } { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3}{3}-\frac{4}{3}}{2-\frac{8}{3}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{3-4}{3}}{2-\frac{8}{3}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{4}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{1}{3}}{2-\frac{8}{3}}
Tangohia te 4 i te 3, ka -1.
\frac{-\frac{1}{3}}{\frac{6}{3}-\frac{8}{3}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{-\frac{1}{3}}{\frac{6-8}{3}}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{8}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{1}{3}}{-\frac{2}{3}}
Tangohia te 8 i te 6, ka -2.
-\frac{1}{3}\left(-\frac{3}{2}\right)
Whakawehe -\frac{1}{3} ki te -\frac{2}{3} mā te whakarea -\frac{1}{3} ki te tau huripoki o -\frac{2}{3}.
\frac{-\left(-3\right)}{3\times 2}
Me whakarea te -\frac{1}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{6}
Mahia ngā whakarea i roto i te hautanga \frac{-\left(-3\right)}{3\times 2}.
\frac{1}{2}
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}