Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x}{x}-\frac{3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{x-3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{3}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-3}{x}}{\frac{x}{x}+\frac{3}{x}}=\frac{2}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{x-3}{x}}{\frac{x+3}{x}}=\frac{2}{3}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{3}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x-3\right)x}{x\left(x+3\right)}=\frac{2}{3}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe \frac{x-3}{x} ki te \frac{x+3}{x} mā te whakarea \frac{x-3}{x} ki te tau huripoki o \frac{x+3}{x}.
\frac{x^{2}-3x}{x\left(x+3\right)}=\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
\frac{x^{2}-3x}{x^{2}+3x}=\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
3\left(x^{2}-3x\right)=2x\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+3x,3.
3x^{2}-9x=2x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}-3x.
3x^{2}-9x=2x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+3.
3x^{2}-9x-2x^{2}=6x
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-9x=6x
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-9x-6x=0
Tangohia te 6x mai i ngā taha e rua.
x^{2}-15x=0
Pahekotia te -9x me -6x, ka -15x.
x\left(x-15\right)=0
Tauwehea te x.
x=0 x=15
Hei kimi otinga whārite, me whakaoti te x=0 me te x-15=0.
x=15
Tē taea kia ōrite te tāupe x ki 0.
\frac{\frac{x}{x}-\frac{3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{x-3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{3}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-3}{x}}{\frac{x}{x}+\frac{3}{x}}=\frac{2}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{x-3}{x}}{\frac{x+3}{x}}=\frac{2}{3}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{3}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x-3\right)x}{x\left(x+3\right)}=\frac{2}{3}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe \frac{x-3}{x} ki te \frac{x+3}{x} mā te whakarea \frac{x-3}{x} ki te tau huripoki o \frac{x+3}{x}.
\frac{x^{2}-3x}{x\left(x+3\right)}=\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
\frac{x^{2}-3x}{x^{2}+3x}=\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
\frac{x^{2}-3x}{x^{2}+3x}-\frac{2}{3}=0
Tangohia te \frac{2}{3} mai i ngā taha e rua.
\frac{x^{2}-3x}{x\left(x+3\right)}-\frac{2}{3}=0
Tauwehea te x^{2}+3x.
\frac{3\left(x^{2}-3x\right)}{3x\left(x+3\right)}-\frac{2x\left(x+3\right)}{3x\left(x+3\right)}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x+3\right) me 3 ko 3x\left(x+3\right). Whakareatia \frac{x^{2}-3x}{x\left(x+3\right)} ki te \frac{3}{3}. Whakareatia \frac{2}{3} ki te \frac{x\left(x+3\right)}{x\left(x+3\right)}.
\frac{3\left(x^{2}-3x\right)-2x\left(x+3\right)}{3x\left(x+3\right)}=0
Tā te mea he rite te tauraro o \frac{3\left(x^{2}-3x\right)}{3x\left(x+3\right)} me \frac{2x\left(x+3\right)}{3x\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{2}-9x-2x^{2}-6x}{3x\left(x+3\right)}=0
Mahia ngā whakarea i roto o 3\left(x^{2}-3x\right)-2x\left(x+3\right).
\frac{x^{2}-15x}{3x\left(x+3\right)}=0
Whakakotahitia ngā kupu rite i 3x^{2}-9x-2x^{2}-6x.
x^{2}-15x=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x\left(x+3\right).
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -15 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±15}{2}
Tuhia te pūtakerua o te \left(-15\right)^{2}.
x=\frac{15±15}{2}
Ko te tauaro o -15 ko 15.
x=\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{15±15}{2} ina he tāpiri te ±. Tāpiri 15 ki te 15.
x=15
Whakawehe 30 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{15±15}{2} ina he tango te ±. Tango 15 mai i 15.
x=0
Whakawehe 0 ki te 2.
x=15 x=0
Kua oti te whārite te whakatau.
x=15
Tē taea kia ōrite te tāupe x ki 0.
\frac{\frac{x}{x}-\frac{3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{x-3}{x}}{1+\frac{3}{x}}=\frac{2}{3}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{3}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-3}{x}}{\frac{x}{x}+\frac{3}{x}}=\frac{2}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{x-3}{x}}{\frac{x+3}{x}}=\frac{2}{3}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{3}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x-3\right)x}{x\left(x+3\right)}=\frac{2}{3}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe \frac{x-3}{x} ki te \frac{x+3}{x} mā te whakarea \frac{x-3}{x} ki te tau huripoki o \frac{x+3}{x}.
\frac{x^{2}-3x}{x\left(x+3\right)}=\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
\frac{x^{2}-3x}{x^{2}+3x}=\frac{2}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
3\left(x^{2}-3x\right)=2x\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+3x,3.
3x^{2}-9x=2x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}-3x.
3x^{2}-9x=2x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+3.
3x^{2}-9x-2x^{2}=6x
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-9x=6x
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-9x-6x=0
Tangohia te 6x mai i ngā taha e rua.
x^{2}-15x=0
Pahekotia te -9x me -6x, ka -15x.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{15}{2}\right)^{2}=\frac{225}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{15}{2} x-\frac{15}{2}=-\frac{15}{2}
Whakarūnātia.
x=15 x=0
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
x=15
Tē taea kia ōrite te tāupe x ki 0.