Whakaoti mō x
x = \frac{23}{5} = 4\frac{3}{5} = 4.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+9+\left(x-5\right)\times 9=10
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-5,x+9,x^{2}+4x-45.
x+9+9x-45=10
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 9.
10x+9-45=10
Pahekotia te x me 9x, ka 10x.
10x-36=10
Tangohia te 45 i te 9, ka -36.
10x=10+36
Me tāpiri te 36 ki ngā taha e rua.
10x=46
Tāpirihia te 10 ki te 36, ka 46.
x=\frac{46}{10}
Whakawehea ngā taha e rua ki te 10.
x=\frac{23}{5}
Whakahekea te hautanga \frac{46}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}