Aromātai
\frac{x+1}{x^{2}-9}
Kimi Pārōnaki e ai ki x
\frac{-x^{2}-2x-9}{\left(x^{2}-9\right)^{2}}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 1 } { x - 3 } - \frac { 2 } { x ^ { 2 } - 9 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{x-3}-\frac{2}{\left(x-3\right)\left(x+3\right)}
Tauwehea te x^{2}-9.
\frac{x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-3 me \left(x-3\right)\left(x+3\right) ko \left(x-3\right)\left(x+3\right). Whakareatia \frac{1}{x-3} ki te \frac{x+3}{x+3}.
\frac{x+3-2}{\left(x-3\right)\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{x+3}{\left(x-3\right)\left(x+3\right)} me \frac{2}{\left(x-3\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x+1}{\left(x-3\right)\left(x+3\right)}
Whakakotahitia ngā kupu rite i x+3-2.
\frac{x+1}{x^{2}-9}
Whakarohaina te \left(x-3\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-3}-\frac{2}{\left(x-3\right)\left(x+3\right)})
Tauwehea te x^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-3 me \left(x-3\right)\left(x+3\right) ko \left(x-3\right)\left(x+3\right). Whakareatia \frac{1}{x-3} ki te \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+3-2}{\left(x-3\right)\left(x+3\right)})
Tā te mea he rite te tauraro o \frac{x+3}{\left(x-3\right)\left(x+3\right)} me \frac{2}{\left(x-3\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-3\right)\left(x+3\right)})
Whakakotahitia ngā kupu rite i x+3-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{x^{2}-9})
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
\frac{\left(x^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)-\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-9)}{\left(x^{2}-9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-9\right)x^{1-1}-\left(x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}-9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-9\right)x^{0}-\left(x^{1}+1\right)\times 2x^{1}}{\left(x^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}x^{0}-9x^{0}-\left(x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{x^{2}-9x^{0}-\left(2x^{1+1}+2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{x^{2}-9x^{0}-\left(2x^{2}+2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}-9x^{0}-2x^{2}-2x^{1}}{\left(x^{2}-9\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(1-2\right)x^{2}-9x^{0}-2x^{1}}{\left(x^{2}-9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{2}-9x^{0}-2x^{1}}{\left(x^{2}-9\right)^{2}}
Tango 2 mai i 1.
\frac{-x^{2}-9x^{0}-2x}{\left(x^{2}-9\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-x^{2}-9-2x}{\left(x^{2}-9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}