Whakaoti mō x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-6\right)\left(x-5\right)\left(x-4\right)-\left(x-6\right)\left(x-5\right)\left(x-3\right)=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4,5,6 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-6\right)\left(x-5\right)\left(x-4\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x-4,x-5,x-6.
\left(x^{2}-11x+30\right)\left(x-4\right)-\left(x-6\right)\left(x-5\right)\left(x-3\right)=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-6 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{3}-15x^{2}+74x-120-\left(x-6\right)\left(x-5\right)\left(x-3\right)=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}-11x+30 ki te x-4 ka whakakotahi i ngā kupu rite.
x^{3}-15x^{2}+74x-120-\left(x^{2}-11x+30\right)\left(x-3\right)=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-6 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{3}-15x^{2}+74x-120-\left(x^{3}-14x^{2}+63x-90\right)=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}-11x+30 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{3}-15x^{2}+74x-120-x^{3}+14x^{2}-63x+90=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Hei kimi i te tauaro o x^{3}-14x^{2}+63x-90, kimihia te tauaro o ia taurangi.
-15x^{2}+74x-120+14x^{2}-63x+90=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Pahekotia te x^{3} me -x^{3}, ka 0.
-x^{2}+74x-120-63x+90=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Pahekotia te -15x^{2} me 14x^{2}, ka -x^{2}.
-x^{2}+11x-120+90=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Pahekotia te 74x me -63x, ka 11x.
-x^{2}+11x-30=\left(x-6\right)\left(x-4\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Tāpirihia te -120 ki te 90, ka -30.
-x^{2}+11x-30=\left(x^{2}-10x+24\right)\left(x-3\right)-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-6 ki te x-4 ka whakakotahi i ngā kupu rite.
-x^{2}+11x-30=x^{3}-13x^{2}+54x-72-\left(x-5\right)\left(x-4\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}-10x+24 ki te x-3 ka whakakotahi i ngā kupu rite.
-x^{2}+11x-30=x^{3}-13x^{2}+54x-72-\left(x^{2}-9x+20\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te x-4 ka whakakotahi i ngā kupu rite.
-x^{2}+11x-30=x^{3}-13x^{2}+54x-72-\left(x^{3}-12x^{2}+47x-60\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}-9x+20 ki te x-3 ka whakakotahi i ngā kupu rite.
-x^{2}+11x-30=x^{3}-13x^{2}+54x-72-x^{3}+12x^{2}-47x+60
Hei kimi i te tauaro o x^{3}-12x^{2}+47x-60, kimihia te tauaro o ia taurangi.
-x^{2}+11x-30=-13x^{2}+54x-72+12x^{2}-47x+60
Pahekotia te x^{3} me -x^{3}, ka 0.
-x^{2}+11x-30=-x^{2}+54x-72-47x+60
Pahekotia te -13x^{2} me 12x^{2}, ka -x^{2}.
-x^{2}+11x-30=-x^{2}+7x-72+60
Pahekotia te 54x me -47x, ka 7x.
-x^{2}+11x-30=-x^{2}+7x-12
Tāpirihia te -72 ki te 60, ka -12.
-x^{2}+11x-30+x^{2}=7x-12
Me tāpiri te x^{2} ki ngā taha e rua.
11x-30=7x-12
Pahekotia te -x^{2} me x^{2}, ka 0.
11x-30-7x=-12
Tangohia te 7x mai i ngā taha e rua.
4x-30=-12
Pahekotia te 11x me -7x, ka 4x.
4x=-12+30
Me tāpiri te 30 ki ngā taha e rua.
4x=18
Tāpirihia te -12 ki te 30, ka 18.
x=\frac{18}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}