Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{x-3}+\frac{2\left(x-3\right)}{x-3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{x-3}{x-3}.
\frac{1+2\left(x-3\right)}{x-3}
Tā te mea he rite te tauraro o \frac{1}{x-3} me \frac{2\left(x-3\right)}{x-3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1+2x-6}{x-3}
Mahia ngā whakarea i roto o 1+2\left(x-3\right).
\frac{-5+2x}{x-3}
Whakakotahitia ngā kupu rite i 1+2x-6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-3}+\frac{2\left(x-3\right)}{x-3})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2\left(x-3\right)}{x-3})
Tā te mea he rite te tauraro o \frac{1}{x-3} me \frac{2\left(x-3\right)}{x-3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2x-6}{x-3})
Mahia ngā whakarea i roto o 1+2\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5+2x}{x-3})
Whakakotahitia ngā kupu rite i 1+2x-6.
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}-5)-\left(2x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}-3\right)\times 2x^{1-1}-\left(2x^{1}-5\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}-3\right)\times 2x^{0}-\left(2x^{1}-5\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 2x^{0}-3\times 2x^{0}-\left(2x^{1}x^{0}-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2x^{1}-3\times 2x^{0}-\left(2x^{1}-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{1}-6x^{0}-\left(2x^{1}-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Mahia ngā tātaitanga.
\frac{2x^{1}-6x^{0}-2x^{1}-\left(-5x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(2-2\right)x^{1}+\left(-6-\left(-5\right)\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{0}}{\left(x^{1}-3\right)^{2}}
Tangohia te 2 i 2 me te -5 i te -6.
\frac{-x^{0}}{\left(x-3\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-1}{\left(x-3\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.