Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2-4=\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x-2=\left(x-2\right)\left(x+2\right)
Tangohia te 4 i te 2, ka -2.
x-2=x^{2}-4
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x-2-x^{2}=-4
Tangohia te x^{2} mai i ngā taha e rua.
x-2-x^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
x+2-x^{2}=0
Tāpirihia te -2 ki te 4, ka 2.
-x^{2}+x+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=-2=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=2 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+2x\right)+\left(-x+2\right)
Tuhia anō te -x^{2}+x+2 hei \left(-x^{2}+2x\right)+\left(-x+2\right).
-x\left(x-2\right)-\left(x-2\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-2\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-1
Hei kimi otinga whārite, me whakaoti te x-2=0 me te -x-1=0.
x=-1
Tē taea kia ōrite te tāupe x ki 2.
x+2-4=\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x-2=\left(x-2\right)\left(x+2\right)
Tangohia te 4 i te 2, ka -2.
x-2=x^{2}-4
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x-2-x^{2}=-4
Tangohia te x^{2} mai i ngā taha e rua.
x-2-x^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
x+2-x^{2}=0
Tāpirihia te -2 ki te 4, ka 2.
-x^{2}+x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
Whakareatia 4 ki te 2.
x=\frac{-1±\sqrt{9}}{2\left(-1\right)}
Tāpiri 1 ki te 8.
x=\frac{-1±3}{2\left(-1\right)}
Tuhia te pūtakerua o te 9.
x=\frac{-1±3}{-2}
Whakareatia 2 ki te -1.
x=\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-1±3}{-2} ina he tāpiri te ±. Tāpiri -1 ki te 3.
x=-1
Whakawehe 2 ki te -2.
x=-\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-1±3}{-2} ina he tango te ±. Tango 3 mai i -1.
x=2
Whakawehe -4 ki te -2.
x=-1 x=2
Kua oti te whārite te whakatau.
x=-1
Tē taea kia ōrite te tāupe x ki 2.
x+2-4=\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x-2=\left(x-2\right)\left(x+2\right)
Tangohia te 4 i te 2, ka -2.
x-2=x^{2}-4
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x-2-x^{2}=-4
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}=-4+2
Me tāpiri te 2 ki ngā taha e rua.
x-x^{2}=-2
Tāpirihia te -4 ki te 2, ka -2.
-x^{2}+x=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{2}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{1}{-1}x=-\frac{2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-x=-\frac{2}{-1}
Whakawehe 1 ki te -1.
x^{2}-x=2
Whakawehe -2 ki te -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
x=2 x=-1
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
x=-1
Tē taea kia ōrite te tāupe x ki 2.