Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-2})
Tangohia te 1 i te -1, ka -2.
-\left(x^{1}-2\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{1}-2\right)^{-2}x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-x^{0}\left(x^{1}-2\right)^{-2}
Whakarūnātia.
-x^{0}\left(x-2\right)^{-2}
Mō tētahi kupu t, t^{1}=t.
-\left(x-2\right)^{-2}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{x-2}
Tangohia te 1 i te -1, ka -2.