Whakaoti mō x
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-12-\left(6x-6\right)\times 2=3x-6-\left(x-1\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x-2\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x-2,2x-2,3\left(2x-4\right).
6x-12-\left(12x-12\right)=3x-6-\left(x-1\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te 6x-6 ki te 2.
6x-12-12x+12=3x-6-\left(x-1\right)\times 7
Hei kimi i te tauaro o 12x-12, kimihia te tauaro o ia taurangi.
-6x-12+12=3x-6-\left(x-1\right)\times 7
Pahekotia te 6x me -12x, ka -6x.
-6x=3x-6-\left(x-1\right)\times 7
Tāpirihia te -12 ki te 12, ka 0.
-6x=3x-6-\left(7x-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 7.
-6x=3x-6-7x+7
Hei kimi i te tauaro o 7x-7, kimihia te tauaro o ia taurangi.
-6x=-4x-6+7
Pahekotia te 3x me -7x, ka -4x.
-6x=-4x+1
Tāpirihia te -6 ki te 7, ka 1.
-6x+4x=1
Me tāpiri te 4x ki ngā taha e rua.
-2x=1
Pahekotia te -6x me 4x, ka -2x.
x=\frac{1}{-2}
Whakawehea ngā taha e rua ki te -2.
x=-\frac{1}{2}
Ka taea te hautanga \frac{1}{-2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}