Whakaoti mō x
x=\frac{2}{3}\approx 0.666666667
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { x - 1 } + \frac { 1 } { 2 x - 1 } = 0
Tohaina
Kua tāruatia ki te papatopenga
2x-1+x-1=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara \frac{1}{2},1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(2x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,2x-1.
3x-1-1=0
Pahekotia te 2x me x, ka 3x.
3x-2=0
Tangohia te 1 i te -1, ka -2.
3x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}