Whakaoti mō a
a=-\frac{2\left(1-x\right)}{x\left(2-x\right)}
x\neq 0\text{ and }x\neq 2
Whakaoti mō x
\left\{\begin{matrix}x=-\frac{\sqrt{a^{2}+1}-a+1}{a}\text{; }x=\frac{\sqrt{a^{2}+1}+a-1}{a}\text{, }&a\neq 0\\x=1\text{, }&a=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2+x=-x\left(x-2\right)a
Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,2-x.
2x-2=-x\left(x-2\right)a
Pahekotia te x me x, ka 2x.
2x-2=-\left(x^{2}-2x\right)a
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-2.
2x-2=-\left(x^{2}a-2xa\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-2x ki te a.
2x-2=-x^{2}a+2xa
Hei kimi i te tauaro o x^{2}a-2xa, kimihia te tauaro o ia taurangi.
-x^{2}a+2xa=2x-2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-x^{2}+2x\right)a=2x-2
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(2x-x^{2}\right)a=2x-2
He hanga arowhānui tō te whārite.
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=\frac{2x-2}{2x-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+2x.
a=\frac{2x-2}{2x-x^{2}}
Mā te whakawehe ki te -x^{2}+2x ka wetekia te whakareanga ki te -x^{2}+2x.
a=\frac{2\left(x-1\right)}{x\left(2-x\right)}
Whakawehe -2+2x ki te -x^{2}+2x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}