Aromātai
\frac{x}{x^{2}-1}
Kimi Pārōnaki e ai ki x
\frac{-x^{2}-1}{\left(x^{2}-1\right)^{2}}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 1 } { x } \times \frac { x ^ { 2 } } { x ^ { 2 } - 1 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{x^{2}}{x\left(x^{2}-1\right)}
Me whakarea te \frac{1}{x} ki te \frac{x^{2}}{x^{2}-1} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x}{x^{2}-1}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}}{x\left(x^{2}-1\right)})
Me whakarea te \frac{1}{x} ki te \frac{x^{2}}{x^{2}-1} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x^{2}-1})
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-1\right)x^{1-1}-x^{1}\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-1\right)x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}x^{0}-x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{x^{2}-x^{0}-2x^{1+1}}{\left(x^{2}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{x^{2}-x^{0}-2x^{2}}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(1-2\right)x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
Tango 2 mai i 1.
\frac{-x^{2}-1}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}