Whakaoti mō a
a=-\frac{bx}{x-b}
b\neq 0\text{ and }x\neq 0\text{ and }x\neq b
Whakaoti mō b
b=-\frac{ax}{x-a}
a\neq 0\text{ and }x\neq 0\text{ and }x\neq a
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { x } = \frac { 1 } { a } + \frac { 1 } { b }
Tohaina
Kua tāruatia ki te papatopenga
ab=bx+ax
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te abx, arā, te tauraro pātahi he tino iti rawa te kitea o x,a,b.
ab-ax=bx
Tangohia te ax mai i ngā taha e rua.
\left(b-x\right)a=bx
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(b-x\right)a}{b-x}=\frac{bx}{b-x}
Whakawehea ngā taha e rua ki te b-x.
a=\frac{bx}{b-x}
Mā te whakawehe ki te b-x ka wetekia te whakareanga ki te b-x.
a=\frac{bx}{b-x}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
ab=bx+ax
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te abx, arā, te tauraro pātahi he tino iti rawa te kitea o x,a,b.
ab-bx=ax
Tangohia te bx mai i ngā taha e rua.
\left(a-x\right)b=ax
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\frac{\left(a-x\right)b}{a-x}=\frac{ax}{a-x}
Whakawehea ngā taha e rua ki te a-x.
b=\frac{ax}{a-x}
Mā te whakawehe ki te a-x ka wetekia te whakareanga ki te a-x.
b=\frac{ax}{a-x}\text{, }b\neq 0
Tē taea kia ōrite te tāupe b ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}