Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x-1}{x\left(x-1\right)}+\frac{2x}{x\left(x-1\right)}-\frac{3x+1}{x^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me x-1 ko x\left(x-1\right). Whakareatia \frac{1}{x} ki te \frac{x-1}{x-1}. Whakareatia \frac{2}{x-1} ki te \frac{x}{x}.
\frac{x-1+2x}{x\left(x-1\right)}-\frac{3x+1}{x^{2}-1}
Tā te mea he rite te tauraro o \frac{x-1}{x\left(x-1\right)} me \frac{2x}{x\left(x-1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3x-1}{x\left(x-1\right)}-\frac{3x+1}{x^{2}-1}
Whakakotahitia ngā kupu rite i x-1+2x.
\frac{3x-1}{x\left(x-1\right)}-\frac{3x+1}{\left(x-1\right)\left(x+1\right)}
Tauwehea te x^{2}-1.
\frac{\left(3x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(3x+1\right)x}{x\left(x-1\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-1\right) me \left(x-1\right)\left(x+1\right) ko x\left(x-1\right)\left(x+1\right). Whakareatia \frac{3x-1}{x\left(x-1\right)} ki te \frac{x+1}{x+1}. Whakareatia \frac{3x+1}{\left(x-1\right)\left(x+1\right)} ki te \frac{x}{x}.
\frac{\left(3x-1\right)\left(x+1\right)-\left(3x+1\right)x}{x\left(x-1\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{\left(3x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)} me \frac{\left(3x+1\right)x}{x\left(x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{2}+3x-x-1-3x^{2}-x}{x\left(x-1\right)\left(x+1\right)}
Mahia ngā whakarea i roto o \left(3x-1\right)\left(x+1\right)-\left(3x+1\right)x.
\frac{x-1}{x\left(x-1\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i 3x^{2}+3x-x-1-3x^{2}-x.
\frac{1}{x\left(x+1\right)}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{1}{x^{2}+x}
Whakarohaina te x\left(x+1\right).
\frac{x-1}{x\left(x-1\right)}+\frac{2x}{x\left(x-1\right)}-\frac{3x+1}{x^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me x-1 ko x\left(x-1\right). Whakareatia \frac{1}{x} ki te \frac{x-1}{x-1}. Whakareatia \frac{2}{x-1} ki te \frac{x}{x}.
\frac{x-1+2x}{x\left(x-1\right)}-\frac{3x+1}{x^{2}-1}
Tā te mea he rite te tauraro o \frac{x-1}{x\left(x-1\right)} me \frac{2x}{x\left(x-1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3x-1}{x\left(x-1\right)}-\frac{3x+1}{x^{2}-1}
Whakakotahitia ngā kupu rite i x-1+2x.
\frac{3x-1}{x\left(x-1\right)}-\frac{3x+1}{\left(x-1\right)\left(x+1\right)}
Tauwehea te x^{2}-1.
\frac{\left(3x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(3x+1\right)x}{x\left(x-1\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-1\right) me \left(x-1\right)\left(x+1\right) ko x\left(x-1\right)\left(x+1\right). Whakareatia \frac{3x-1}{x\left(x-1\right)} ki te \frac{x+1}{x+1}. Whakareatia \frac{3x+1}{\left(x-1\right)\left(x+1\right)} ki te \frac{x}{x}.
\frac{\left(3x-1\right)\left(x+1\right)-\left(3x+1\right)x}{x\left(x-1\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{\left(3x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)} me \frac{\left(3x+1\right)x}{x\left(x-1\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{2}+3x-x-1-3x^{2}-x}{x\left(x-1\right)\left(x+1\right)}
Mahia ngā whakarea i roto o \left(3x-1\right)\left(x+1\right)-\left(3x+1\right)x.
\frac{x-1}{x\left(x-1\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i 3x^{2}+3x-x-1-3x^{2}-x.
\frac{1}{x\left(x+1\right)}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{1}{x^{2}+x}
Whakarohaina te x\left(x+1\right).