Whakaoti mō x
x=3
x=28
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 1 } { x } + \frac { 1 } { x - 7 } = \frac { 1 } { 12 }
Tohaina
Kua tāruatia ki te papatopenga
12x-84+12x=x\left(x-7\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x\left(x-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-7,12.
24x-84=x\left(x-7\right)
Pahekotia te 12x me 12x, ka 24x.
24x-84=x^{2}-7x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-7.
24x-84-x^{2}=-7x
Tangohia te x^{2} mai i ngā taha e rua.
24x-84-x^{2}+7x=0
Me tāpiri te 7x ki ngā taha e rua.
31x-84-x^{2}=0
Pahekotia te 24x me 7x, ka 31x.
-x^{2}+31x-84=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=31 ab=-\left(-84\right)=84
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-84. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,84 2,42 3,28 4,21 6,14 7,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Tātaihia te tapeke mō ia takirua.
a=28 b=3
Ko te otinga te takirua ka hoatu i te tapeke 31.
\left(-x^{2}+28x\right)+\left(3x-84\right)
Tuhia anō te -x^{2}+31x-84 hei \left(-x^{2}+28x\right)+\left(3x-84\right).
-x\left(x-28\right)+3\left(x-28\right)
Tauwehea te -x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-28\right)\left(-x+3\right)
Whakatauwehea atu te kīanga pātahi x-28 mā te whakamahi i te āhuatanga tātai tohatoha.
x=28 x=3
Hei kimi otinga whārite, me whakaoti te x-28=0 me te -x+3=0.
12x-84+12x=x\left(x-7\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x\left(x-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-7,12.
24x-84=x\left(x-7\right)
Pahekotia te 12x me 12x, ka 24x.
24x-84=x^{2}-7x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-7.
24x-84-x^{2}=-7x
Tangohia te x^{2} mai i ngā taha e rua.
24x-84-x^{2}+7x=0
Me tāpiri te 7x ki ngā taha e rua.
31x-84-x^{2}=0
Pahekotia te 24x me 7x, ka 31x.
-x^{2}+31x-84=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-31±\sqrt{31^{2}-4\left(-1\right)\left(-84\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 31 mō b, me -84 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-31±\sqrt{961-4\left(-1\right)\left(-84\right)}}{2\left(-1\right)}
Pūrua 31.
x=\frac{-31±\sqrt{961+4\left(-84\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-31±\sqrt{961-336}}{2\left(-1\right)}
Whakareatia 4 ki te -84.
x=\frac{-31±\sqrt{625}}{2\left(-1\right)}
Tāpiri 961 ki te -336.
x=\frac{-31±25}{2\left(-1\right)}
Tuhia te pūtakerua o te 625.
x=\frac{-31±25}{-2}
Whakareatia 2 ki te -1.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-31±25}{-2} ina he tāpiri te ±. Tāpiri -31 ki te 25.
x=3
Whakawehe -6 ki te -2.
x=-\frac{56}{-2}
Nā, me whakaoti te whārite x=\frac{-31±25}{-2} ina he tango te ±. Tango 25 mai i -31.
x=28
Whakawehe -56 ki te -2.
x=3 x=28
Kua oti te whārite te whakatau.
12x-84+12x=x\left(x-7\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x\left(x-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-7,12.
24x-84=x\left(x-7\right)
Pahekotia te 12x me 12x, ka 24x.
24x-84=x^{2}-7x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-7.
24x-84-x^{2}=-7x
Tangohia te x^{2} mai i ngā taha e rua.
24x-84-x^{2}+7x=0
Me tāpiri te 7x ki ngā taha e rua.
31x-84-x^{2}=0
Pahekotia te 24x me 7x, ka 31x.
31x-x^{2}=84
Me tāpiri te 84 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x^{2}+31x=84
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+31x}{-1}=\frac{84}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{31}{-1}x=\frac{84}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-31x=\frac{84}{-1}
Whakawehe 31 ki te -1.
x^{2}-31x=-84
Whakawehe 84 ki te -1.
x^{2}-31x+\left(-\frac{31}{2}\right)^{2}=-84+\left(-\frac{31}{2}\right)^{2}
Whakawehea te -31, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{31}{2}. Nā, tāpiria te pūrua o te -\frac{31}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-31x+\frac{961}{4}=-84+\frac{961}{4}
Pūruatia -\frac{31}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-31x+\frac{961}{4}=\frac{625}{4}
Tāpiri -84 ki te \frac{961}{4}.
\left(x-\frac{31}{2}\right)^{2}=\frac{625}{4}
Tauwehea x^{2}-31x+\frac{961}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{31}{2}=\frac{25}{2} x-\frac{31}{2}=-\frac{25}{2}
Whakarūnātia.
x=28 x=3
Me tāpiri \frac{31}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}