Whakaoti mō x
x=-4
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+24+4x+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+6,4.
8x+24+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Pahekotia te 4x me 4x, ka 8x.
8x+24-x\left(x+6\right)=0
Whakareatia te 4 ki te -\frac{1}{4}, ka -1.
8x+24-x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+6.
2x+24-x^{2}=0
Pahekotia te 8x me -6x, ka 2x.
-x^{2}+2x+24=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-24=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=6 b=-4
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(-x^{2}+6x\right)+\left(-4x+24\right)
Tuhia anō te -x^{2}+2x+24 hei \left(-x^{2}+6x\right)+\left(-4x+24\right).
-x\left(x-6\right)-4\left(x-6\right)
Tauwehea te -x i te tuatahi me te -4 i te rōpū tuarua.
\left(x-6\right)\left(-x-4\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-4
Hei kimi otinga whārite, me whakaoti te x-6=0 me te -x-4=0.
4x+24+4x+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+6,4.
8x+24+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Pahekotia te 4x me 4x, ka 8x.
8x+24-x\left(x+6\right)=0
Whakareatia te 4 ki te -\frac{1}{4}, ka -1.
8x+24-x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+6.
2x+24-x^{2}=0
Pahekotia te 8x me -6x, ka 2x.
-x^{2}+2x+24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 24}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 24}}{2\left(-1\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+4\times 24}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-2±\sqrt{4+96}}{2\left(-1\right)}
Whakareatia 4 ki te 24.
x=\frac{-2±\sqrt{100}}{2\left(-1\right)}
Tāpiri 4 ki te 96.
x=\frac{-2±10}{2\left(-1\right)}
Tuhia te pūtakerua o te 100.
x=\frac{-2±10}{-2}
Whakareatia 2 ki te -1.
x=\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{-2±10}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 10.
x=-4
Whakawehe 8 ki te -2.
x=-\frac{12}{-2}
Nā, me whakaoti te whārite x=\frac{-2±10}{-2} ina he tango te ±. Tango 10 mai i -2.
x=6
Whakawehe -12 ki te -2.
x=-4 x=6
Kua oti te whārite te whakatau.
4x+24+4x+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+6,4.
8x+24+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Pahekotia te 4x me 4x, ka 8x.
8x+24-x\left(x+6\right)=0
Whakareatia te 4 ki te -\frac{1}{4}, ka -1.
8x+24-x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+6.
2x+24-x^{2}=0
Pahekotia te 8x me -6x, ka 2x.
2x-x^{2}=-24
Tangohia te 24 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}+2x=-24
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{24}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{2}{-1}x=-\frac{24}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-2x=-\frac{24}{-1}
Whakawehe 2 ki te -1.
x^{2}-2x=24
Whakawehe -24 ki te -1.
x^{2}-2x+1=24+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=25
Tāpiri 24 ki te 1.
\left(x-1\right)^{2}=25
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=5 x-1=-5
Whakarūnātia.
x=6 x=-4
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}