Whakaoti mō x
x=-\frac{2y}{1-16y}
y\neq 0\text{ and }y\neq \frac{1}{16}
Whakaoti mō y
y=-\frac{x}{2\left(1-8x\right)}
x\neq 0\text{ and }x\neq \frac{1}{8}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y+x=16xy
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2xy, arā, te tauraro pātahi he tino iti rawa te kitea o x,2y.
2y+x-16xy=0
Tangohia te 16xy mai i ngā taha e rua.
x-16xy=-2y
Tangohia te 2y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(1-16y\right)x=-2y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-16y\right)x}{1-16y}=-\frac{2y}{1-16y}
Whakawehea ngā taha e rua ki te 1-16y.
x=-\frac{2y}{1-16y}
Mā te whakawehe ki te 1-16y ka wetekia te whakareanga ki te 1-16y.
x=-\frac{2y}{1-16y}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
2y+x=16xy
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2xy, arā, te tauraro pātahi he tino iti rawa te kitea o x,2y.
2y+x-16xy=0
Tangohia te 16xy mai i ngā taha e rua.
2y-16xy=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(2-16x\right)y=-x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(2-16x\right)y}{2-16x}=-\frac{x}{2-16x}
Whakawehea ngā taha e rua ki te 2-16x.
y=-\frac{x}{2-16x}
Mā te whakawehe ki te 2-16x ka wetekia te whakareanga ki te 2-16x.
y=-\frac{x}{2\left(1-8x\right)}
Whakawehe -x ki te 2-16x.
y=-\frac{x}{2\left(1-8x\right)}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}