Whakaoti mō x
x = \frac{3 \sqrt{2}}{2} \approx 2.121320344
x = -\frac{3 \sqrt{2}}{2} \approx -2.121320344
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+\left(1+x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{3}+2x^{2}-x-2,1-x,x+1.
1+2+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+x ki te 2+x ka whakakotahi i ngā kupu rite.
3+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
Tāpirihia te 1 ki te 2, ka 3.
3+3x+x^{2}=\left(x^{2}+x-2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x+2 ka whakakotahi i ngā kupu rite.
3+3x+x^{2}=3x^{2}+3x-6
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x-2 ki te 3.
3+3x+x^{2}-3x^{2}=3x-6
Tangohia te 3x^{2} mai i ngā taha e rua.
3+3x-2x^{2}=3x-6
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
3+3x-2x^{2}-3x=-6
Tangohia te 3x mai i ngā taha e rua.
3-2x^{2}=-6
Pahekotia te 3x me -3x, ka 0.
-2x^{2}=-6-3
Tangohia te 3 mai i ngā taha e rua.
-2x^{2}=-9
Tangohia te 3 i te -6, ka -9.
x^{2}=\frac{-9}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}=\frac{9}{2}
Ka taea te hautanga \frac{-9}{-2} te whakamāmā ki te \frac{9}{2} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1+\left(1+x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{3}+2x^{2}-x-2,1-x,x+1.
1+2+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+x ki te 2+x ka whakakotahi i ngā kupu rite.
3+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
Tāpirihia te 1 ki te 2, ka 3.
3+3x+x^{2}=\left(x^{2}+x-2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x+2 ka whakakotahi i ngā kupu rite.
3+3x+x^{2}=3x^{2}+3x-6
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x-2 ki te 3.
3+3x+x^{2}-3x^{2}=3x-6
Tangohia te 3x^{2} mai i ngā taha e rua.
3+3x-2x^{2}=3x-6
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
3+3x-2x^{2}-3x=-6
Tangohia te 3x mai i ngā taha e rua.
3-2x^{2}=-6
Pahekotia te 3x me -3x, ka 0.
3-2x^{2}+6=0
Me tāpiri te 6 ki ngā taha e rua.
9-2x^{2}=0
Tāpirihia te 3 ki te 6, ka 9.
-2x^{2}+9=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 9}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 0 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\times 9}}{2\left(-2\right)}
Pūrua 0.
x=\frac{0±\sqrt{8\times 9}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{0±\sqrt{72}}{2\left(-2\right)}
Whakareatia 8 ki te 9.
x=\frac{0±6\sqrt{2}}{2\left(-2\right)}
Tuhia te pūtakerua o te 72.
x=\frac{0±6\sqrt{2}}{-4}
Whakareatia 2 ki te -2.
x=-\frac{3\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{2}}{-4} ina he tāpiri te ±.
x=\frac{3\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{2}}{-4} ina he tango te ±.
x=-\frac{3\sqrt{2}}{2} x=\frac{3\sqrt{2}}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}