Aromātai
\frac{3-x}{x\left(x-2\right)}
Kimi Pārōnaki e ai ki x
\frac{x^{2}-6x+6}{\left(x\left(x-2\right)\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{x\left(x-2\right)}-\frac{1}{x}
Tauwehea te x^{2}-2x.
\frac{1}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-2\right) me x ko x\left(x-2\right). Whakareatia \frac{1}{x} ki te \frac{x-2}{x-2}.
\frac{1-\left(x-2\right)}{x\left(x-2\right)}
Tā te mea he rite te tauraro o \frac{1}{x\left(x-2\right)} me \frac{x-2}{x\left(x-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-x+2}{x\left(x-2\right)}
Mahia ngā whakarea i roto o 1-\left(x-2\right).
\frac{3-x}{x\left(x-2\right)}
Whakakotahitia ngā kupu rite i 1-x+2.
\frac{3-x}{x^{2}-2x}
Whakarohaina te x\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x\left(x-2\right)}-\frac{1}{x})
Tauwehea te x^{2}-2x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-2\right) me x ko x\left(x-2\right). Whakareatia \frac{1}{x} ki te \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-\left(x-2\right)}{x\left(x-2\right)})
Tā te mea he rite te tauraro o \frac{1}{x\left(x-2\right)} me \frac{x-2}{x\left(x-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x+2}{x\left(x-2\right)})
Mahia ngā whakarea i roto o 1-\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3-x}{x\left(x-2\right)})
Whakakotahitia ngā kupu rite i 1-x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3-x}{x^{2}-2x})
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-2.
\frac{\left(x^{2}-2x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+3)-\left(-x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1})}{\left(x^{2}-2x^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-2x^{1}\right)\left(-1\right)x^{1-1}-\left(-x^{1}+3\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-2x^{1}\right)\left(-1\right)x^{0}-\left(-x^{1}+3\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}\right)^{2}}
Whakarūnātia.
\frac{x^{2}\left(-1\right)x^{0}-2x^{1}\left(-1\right)x^{0}-\left(-x^{1}+3\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}\right)^{2}}
Whakareatia x^{2}-2x^{1} ki te -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-2x^{1}\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-2\right)x^{0}+3\times 2x^{1}+3\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}\right)^{2}}
Whakareatia -x^{1}+3 ki te 2x^{1}-2x^{0}.
\frac{-x^{2}-2\left(-1\right)x^{1}-\left(-2x^{1+1}-\left(-2x^{1}\right)+3\times 2x^{1}+3\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-x^{2}+2x^{1}-\left(-2x^{2}+2x^{1}+6x^{1}-6x^{0}\right)}{\left(x^{2}-2x^{1}\right)^{2}}
Whakarūnātia.
\frac{x^{2}-6x^{1}+6x^{0}}{\left(x^{2}-2x^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{x^{2}-6x+6x^{0}}{\left(x^{2}-2x\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{x^{2}-6x+6\times 1}{\left(x^{2}-2x\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}-6x+6}{\left(x^{2}-2x\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}