Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
21\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -8,-5,-2,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+x-2,x^{2}+7x+10,x^{2}+13x+40,3x-3,21.
\left(21x+105\right)\left(x+8\right)+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 21 ki te x+5.
21x^{2}+273x+840+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 21x+105 ki te x+8 ka whakakotahi i ngā kupu rite.
21x^{2}+273x+840+\left(21x-21\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 21 ki te x-1.
21x^{2}+273x+840+21x^{2}+147x-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 21x-21 ki te x+8 ka whakakotahi i ngā kupu rite.
42x^{2}+273x+840+147x-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Pahekotia te 21x^{2} me 21x^{2}, ka 42x^{2}.
42x^{2}+420x+840-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Pahekotia te 273x me 147x, ka 420x.
42x^{2}+420x+672+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Tangohia te 168 i te 840, ka 672.
42x^{2}+420x+672+\left(21x+42\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 21 ki te x+2.
42x^{2}+420x+672+21x^{2}+21x-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 21x+42 ki te x-1 ka whakakotahi i ngā kupu rite.
63x^{2}+420x+672+21x-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Pahekotia te 42x^{2} me 21x^{2}, ka 63x^{2}.
63x^{2}+441x+672-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Pahekotia te 420x me 21x, ka 441x.
63x^{2}+441x+630=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Tangohia te 42 i te 672, ka 630.
63x^{2}+441x+630=\left(7x+14\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x+2.
63x^{2}+441x+630=\left(7x^{2}+49x+70\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 7x+14 ki te x+5 ka whakakotahi i ngā kupu rite.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 7x^{2}+49x+70 ki te x+8 ka whakakotahi i ngā kupu rite.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560-\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)
Whakareatia te 21 ki te -\frac{1}{21}, ka -1.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x+1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te x-1.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x^{2}-x+2\right)\left(x+5\right)\left(x+8\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x^{3}-6x^{2}-3x+10\right)\left(x+8\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -x^{2}-x+2 ki te x+5 ka whakakotahi i ngā kupu rite.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560-x^{4}-14x^{3}-51x^{2}-14x+80
Whakamahia te āhuatanga tuaritanga hei whakarea te -x^{3}-6x^{2}-3x+10 ki te x+8 ka whakakotahi i ngā kupu rite.
63x^{2}+441x+630=-7x^{3}+105x^{2}+462x+560-x^{4}-51x^{2}-14x+80
Pahekotia te 7x^{3} me -14x^{3}, ka -7x^{3}.
63x^{2}+441x+630=-7x^{3}+54x^{2}+462x+560-x^{4}-14x+80
Pahekotia te 105x^{2} me -51x^{2}, ka 54x^{2}.
63x^{2}+441x+630=-7x^{3}+54x^{2}+448x+560-x^{4}+80
Pahekotia te 462x me -14x, ka 448x.
63x^{2}+441x+630=-7x^{3}+54x^{2}+448x+640-x^{4}
Tāpirihia te 560 ki te 80, ka 640.
63x^{2}+441x+630+7x^{3}=54x^{2}+448x+640-x^{4}
Me tāpiri te 7x^{3} ki ngā taha e rua.
63x^{2}+441x+630+7x^{3}-54x^{2}=448x+640-x^{4}
Tangohia te 54x^{2} mai i ngā taha e rua.
9x^{2}+441x+630+7x^{3}=448x+640-x^{4}
Pahekotia te 63x^{2} me -54x^{2}, ka 9x^{2}.
9x^{2}+441x+630+7x^{3}-448x=640-x^{4}
Tangohia te 448x mai i ngā taha e rua.
9x^{2}-7x+630+7x^{3}=640-x^{4}
Pahekotia te 441x me -448x, ka -7x.
9x^{2}-7x+630+7x^{3}-640=-x^{4}
Tangohia te 640 mai i ngā taha e rua.
9x^{2}-7x-10+7x^{3}=-x^{4}
Tangohia te 640 i te 630, ka -10.
9x^{2}-7x-10+7x^{3}+x^{4}=0
Me tāpiri te x^{4} ki ngā taha e rua.
x^{4}+7x^{3}+9x^{2}-7x-10=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±10,±5,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -10, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+8x^{2}+17x+10=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}+7x^{3}+9x^{2}-7x-10 ki te x-1, kia riro ko x^{3}+8x^{2}+17x+10. Whakaotihia te whārite ina ōrite te hua ki te 0.
±10,±5,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 10, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+7x+10=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+8x^{2}+17x+10 ki te x+1, kia riro ko x^{2}+7x+10. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 10}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 7 mō te b, me te 10 mō te c i te ture pūrua.
x=\frac{-7±3}{2}
Mahia ngā tātaitai.
x=-5 x=-2
Whakaotia te whārite x^{2}+7x+10=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1
Tangohia ngā uara e kore e ōrite ki te taurangi.
x=1 x=-1 x=-5 x=-2
Rārangitia ngā otinga katoa i kitea.
x=-1
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,-5,-2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}